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Abstract. It is  proved that finding a minimum energy, N-step, self-avoiding walk on a 2D 

square lattice with assigned site energies is an NP-complete problem. However, if the 
fraction of lowest energy sites exceeds the percolation threshold then it is argued the 
problem can almost always be solved in polynomial time. 

i. iniruduciion 

This paper is concerned with the computational complexity of finding minimum energy 
self-avoiding walks (SAWS) in quenched random environments. Several factors have 
led to the recent interest in SAWS in random environments. Firstly, this model may 
help us understand the behaviour of polymers in gels and other porous materials. 
Secondly, this model provides an appealing example of a statistical mechanics problem 
in which disorder plays an important role. The apparent simplicity of the model is 
deceptive and despite more than a decade of work by many investigators, considerable 
disagreement persists. For example, it is of interest to find the scaling of the end-to-end 
size, R, of the SAW, ( R ) -  N' where the brackets represent an average over N-step 
SAWS and the overbar an average over environments. It is not known whether 5 takes 
!he same va!ue as for SAwr in pure enviornments or; if not; whether the value of 5 
changes at the percolation threshold. The reader is referred to Le Doussal and Machta 
(1991) or Lee et nl (1989) for references to the earlier literature. 

Recently it has become clear that the SAW in a random environment is governed 
by a strong disorder fixed point for low dimensionality or sufficiently strong disorder 
(Obukhov 1990, Le Doussal and Machta 1991). Problems governed by strong disorder 
or zero temperature fixed points such as the directed walk in a random environment, 
random field magnets and spin-glasses, have proved difficult to understand and it is 
useful to have another clear-cut example to study. 

One can often extract useful information about the statistical mechanics of a system 
governed by a strong disorder fixed point by studying its ground states. Here this 
means finding a minimum energy or optimal SAW among all N-step SAWS starting from 
the same origin in a given environment. It is believed that the exponent [ can also be 
obtained by computing R for an optimal SAW and then averaging over environments, 
R,,,- Nc. This identification is justified by a renormalization group analysis which 
shows that the effective temperature in the problem flows to zero under renormalization. 

i Internet address: MACHTA@PHAST.UMASS.EDU 

0305-4470/92/030521+07$04.50 @ 1992 IOP Publishing Ltd 521 



522 J Machta 

Thus, if an efficient algorithm could be found to generate optimal  SAW^, it could be 
used to obtain critical exponents such as 5. Unfortunately, the results of this paper 
make it unlikely that such an algorithm exists. 

In this paper we investigate the computational difficulty of finding an optimal SAW 

in a given environment. This is a combinatorial optimization problem similar t o  other 
extensively studied problems in computer science such as the travelling salesman 
(Lawler et a /  1985). During the last two decades considerable progress has been made 
in characterizing the computational complexity of various problems. In particular, the 
property of Np-completeness was introduced and shown to hold for a large number 
of problems (see Carey and Johnson 1979 for an introduction to the theory of 
NP-completeness). The class of N P  (non-deterministic polynomial time) problems 
consists of decision problems for which a proposed solution can be checked in 
polynomial time. The NP-complete class consists of those members of N P  which are at 
least as hard as any other member of NP. If an algorithm exists that could solve one 
NP-complete problem in polynomial time, it could be used to solve any NP problem 
in polynomial time. However, it is generally believed, though not proved, that any 
algorithm which solves all instances of an NP-complete problem must run in exponential 
time for at least some instances of the problem. The travelling salesman is an example 
of an NP-complete problem. A comprehensive list of NP-complete problems can be 
found in Carey and Johnson (1979). It is often difficult to intuit whether a given 
problem is NP-complete. For example, finding the minimum energy SAW of N or fewer 
steps on a lattice with random positive energies can be solved in polynomial time. On 
the other hand, the main result of this paper is that finding a minimum energy SAW 

of exactly N steps is an NP-complete problem. 
Closely related to the SAW in a random environment is the directed self-avoiding 

walk (DSAW) in a random environment. The DSAW differs from the SAW in that one 
coordinate along the path is required to be non-decreasing. Like the SAW, the DSAW 

is governed by a strong disorder fixed point for low dimensionality or sufficiently 
strong disorder (Kardar 1985, Cook and Derrida 1989). Though the DSAW and the 
SAW share many features in common (Le Doussal and Machta 1991) optimal DSAWS 

in a random environment can be found using an efficient polynomial time algorithm 
(Huse and Henley 1985). On the other hand, the fact that the SAW in a random 
environment is NP-compiete suggests that obtaining ground states wiii be computa- 
tionally difficult. Another statistical mechanics model with quenched disorder for which 
finding the ground state is known to be NP-complete is the spin-glass in more that two 
dimensions (Barahona 1982, Bachas 1984). On the other hand, the random field king 
model is a polynomial time problem in any dimension (Barahona 1985). It is of general 
interest to develop connections between statistical mechanics and the theory of compu- 
tational complexity (see Mezard et al 1987). 

2. Proof of Np-completeness for SAWS 

The SAW in a random environment is defined as follows. Consider an L x  L square 
lattice. To each site, a; of the lattice assign an energy cost, E::: for visiting that site. 
An N-step SAW on the lattice is defined as a non-repeating sequence of nearest- 
neighbour sites, r = ( a , ,  a2.. . . , "). The first site, a , ,  is fixed at the origin which is 
taken as the centre of the lattice. The energy of a SAW, E ( T ) ,  is the sum of the energies 
of the sites along r. A particular instance of the optimization problem is an L x  L 
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lattice with assigned energies and a given length N such that N < L2.  The goal is to 
find a least energy SAW of N steps. We refer to such a SAW as optimal. 

A decision problem associated with finding an optimal SAW can be posed as follows: 
‘Is there an N-step SAW starting at the origin on a given realization of an L x L lattice 
with an energy less than o r  equal to a bound?’. In the theory of NPcompleteness the 
size of the problem is measured in terms of the number of bits required to specify an 
instance of the problem so it is necessary to restrict each site energy to a finite number 
of biis. in faci we shaii prove NP-compieieness when ihe siie energies ate eiihei 0 O i  
1. Henceforth we refer to the decision problem with energies 0 or 1 simply as SAW. 

Since the energy of a SAW can be computed in O ( N )  time, SAW is in the class NP. 
The general technique for proving that a new problem is NP-complete is based 

upon constructing a ’polynomial transformation’ from a known NP-complete problem 
to the new problem. The idea is to show that the existence of a polynomial time 
algorithm for the new problem would imply that the known problem (and hence all 
NP-complete problems) could be solved in polynomial time. For the proof that SAW 

is NP-complete, the known problem is deciding whether there is a Hamiltonian path 
on a given cubic, planar graph. We refer io this problem as HP. An instance of HP is 
a cubic (each vertex has three edges), planar graph, G = (E, V )  (see Berge (1985) for 
an introduction to graph theory). A Hamiltonian path is a simple path (self-avoiding 
walk) which visits each vertex of the graph. Garey et al (1976) proved that HP is 
NP-complete. 

The strategy for showing that SAW is NP-complete is to embed an arbitrary planar 
cubic graph G in an L x L lattice. The sites of the lattice which represent vertices or 
edges of G are assigned energy 0 while all other sites are assigned energy I .  A 
Hamiltonian path exists on G if and only if there is a zero energy SAW with a length 
determined by the embedding of G. A crucial ingredient in the proof is checking that 
the required embedding can be accomplished in polynomial time and that the size of 
the required lattice grows as a polynomial in the size of G. 

Let M be the order (number of vertices) of the graph G. The first step is to obtain 
a plane drawing of the graph. Hopcroft and Tarjan (1974) show that there is an 
algorithm which accomplishes this in O ( M )  time. The next step is to construct a first 
embedding of the graph in an L, x L,  lattice. An embedding consists of a map from 

non-intersecting simple paths on the lattice. A practical way to visualize an embedding 
is to imagine that each vertex represents an electrical circuit element and that each 
edge represents a connecting wire. Then an embedding is a layout of the circuit on a 
circuit board which has no wire crossings. 

Given a plane drawing of a planar graph of degree four or less, Valiant (1981) 
showed that an embedding on an L ,  x L,  square lattice can be obtained with L,  = O( M) 
and that the embedding algorithm requires O ( M 2 )  time. For the present argument one 
needs an embedding with the additional property that all edges are represented by 
paths of same length. The following construction converts the first embedding into 
one which has equal path lengths. The length, Q, of the longest path in the first 
embedding is determined. Note that Q = O ( M ) .  Next the L, x L, square lattice and 
the associated representation of G are embedded in  a refined, L,x  L2,  square lattice 
such that L2 = 3 K L ,  where K is to be determined. Each nearest-neighbour bond of 
the first lattice is mapped onto a straight segment of 3K bonds in the second lattice 
so that the length of the longest path representing an edge in G is now 3KQ. In order 
to lengthen shorter paths, ‘switchbacks’ are added as shown in figure 1. If P switchbacks 

the sei Uf vefiices, v, into the dies of the laiiice ifid fiOiii the se; of E, io 
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k--- 3K + 

IF: 
4 p l t  

Figure 1. Introducing switchbacks to increase the path length by PK. 

are added to a straight path of length 3K then the length of the path becomes 3K + PK. 
If K is taken as 3( Q - 1) then every path can be modified so that its length is 9 9 (  Q - 1). 
For example suppose that some edge is represented by a single bond in the first 
embedding and thus by a straight patn of iength 3 K  in the refined embedding. 'Then, 
inserting P = K = 3(Q - 1) switchbacks yields a new path of length 9Q(Q - 1) as 
desired. Notice that the switchbacks are inserted in the middle third of the original 
bonds insuring that path crossings are not created. Finally the switchback are 'insulated' 
from each other by an additional refinement in which the number of the lattice points 
is doubled as shown in figure 2: The final size of the lattice is L x  L with L =  
18(Q-1)L,=O(M2). The embedding of G in this lattice can be performed in time 
O(M3) and requires specifying O(M3) sites for the representation of G. The sequence 
of transformations from the plane drawing to the equal length, insulated embedding 
is shown in figure 2 for an example with M = 2 and Q = 3. 

The transformation of HP to SAW is completed by assigning energy 0 to each site 
on the L x L lattice which represents a vertex of G or is part of a path representing 
an edge of G. All other sites are assigned an energy 1. If a Hamiltonian path exist in 
G then it is represented by a SAW of exactly lSQ(Q- 1)M steps. Thus the length of 
the SAW is chosen as N = lBQ(Q-1)M. If there is a SAW of this length with energy 
zero it represents a Hamiltonian path since it traverses exactly M edges of G, visiting 
each vertex once. Conversely, if there is a Hamiltonian path in G, it is represented by 
an N = 18Q(Q - 1)M-step SAW with energy zero. Note that insulating the switchbacks 
(see figure 3) insures that zero energy paths do not stray from the embedded edges. 

121 l b )  I C )  

Figure 2. Transformations of a planar graph: ( a )  the plane drawing, ( b )  the first lattice 
embedding and (c )  the equal path length, insulated embedding. The individual lattice sites 
are not shown in (c )  but the lattice size is 3 6 x 1 2 .  Veltices are marked X .  
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F i g "  3. Doubling the number of lattice sites so that switchbacks are insulated from each 
"!!er. 

The size of the required instance of SAW is O(L2)  = O(M4) and the time required to 
transform HP to a SAW is O ( M ' ) .  Thus we have exhibited a polynomial transformation 
from HP to SAW and thereby proved that SAW is NP-complete. 

It is a simple consequence of this theorem that several related optimization problems 
are at least as hard as SAW and thus 'NP-hard'. Examples of Np-hard problems are 
finding optimal  SAW^ on lattices of dimension two and greater and with real number 
site energies. 

3. Cases where SAW may be solved in polynomial time 

The f x t  thzt SAW is NP-comp!ete strong!y sugeests that any algorithm capable of 
solving i t  will run for exponential time for some instances of the problem. Are these 
instances generic or exceptional? A discussion of this question requires imposing a 
probability distribution on the assignment of site energies. Suppose the site energies 
are independent, identically distributed (i.i.d.) random variables taking the value 0 
with probability p and 1 with probability 1 - p .  Suppose that N < L / 2  so that no SAW 

reaches the perimeter of the lattice and that p > p c  where p,=O.59275. .  . is the 
percolation threshold for two-dimensional site percolation (see Stauffer 1985). For 
p > pc  the general situation is that there is a spanning or 'infinite' cluster of lowest 
energy sites which either includes the origin or encloses the origin within a cavity 
whose size scales as the percolation correlation length. 

Despite the fact that SAW is NP-complete, above the percolation threshold there is 
a polynomial time algorithm which almost always finds an optimal N-step SAW. This 
algorithm I s  based upon a standard shortest path aigorithm, the Beiiman-Ford method 
(see Lawler 1976). The Bellman-Ford algorithm finds a minimum energy simple path 
of K steps or less between a given point and all other points on an L x  L lattice with 
non-negative site energies. We call the lowest energy simple path of K steps or less 
between two sites a K-optimal path. The Bellman-Ford algorithm runs in time O(L6).  

Define S as the set of sites which are connected by zero energy simple paths to the 
perimeter. Note that S includes the infinite cluster of zero energy sites. The first step 
is constructing an optimal SAW is to use the Bellman-Ford method to find S and a 
zero energy path from the perimeter to every point in S. If the origin is in S we are 
done; if not the next step is to find an N-optimal path from the origin to every site in 
S which can be connected to the origin in N steps or less. Thus we have two simple 
paths to every site a E S which is sufficiently close to the origin; one from the origin 
to a and a second, with zero energy, from a to the perimeter. Among the sites in S 
choose a site having the lowest energy N-optimal path to the origin. Call this path r' 
and its terminus p E S. If this path has fewer than N steps, a segment of the zero 
energy path from p to the perimeter is appended to r' to obtain an optimal N-step 
SAW, r, whose energy is E ( T )  = E(T ' ) .  If r'intersects the path from p to the perimeter, 
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an optimal SAW can be obtained by truncating r' at the last intersection with the path 
to the perimeter and then adding the required length of the path to the perimeter. The 
running time of this algorithm is O(L7) .  

If any optimal SAW visits S then the above algorithm is guaranteed to find an 
optimal SAW. To see this, suppose r" is optimal and visits y E S. Then the algorithm 
will have identified a N-optimal path from the origin to some p E S which has an 
energy less than or equal to E(r") .  This path is then extended to N steps with no 
iurther increase in energy thus constructing the SAW, r, with energy jess than or equai 
to E(r"). Since r" is optimal, E ( r )  = E(Y) and the algorithm has produced an optimal 
walk. On the other hand, if no optimal SAW visits S, the algorithm may fail to produce 
an optimal SAW. 

In  the limit that N and L are taken to infinity holding p > p c  fixed, the algorithm 
given above is expected to find a n  optimal SAW with probability one. The argument 
for this, though non-rigorous, follows from accepted ideas in percolation theory. The 
key idea is that the incipient infinite cluster and thus S typically enclose the origin 
within a region of the size of the correlation length, 5, or less. More specifically, 
consider the set of sites, A, which are connected to the origin by simple paths which 
do not intersect the incipient infinite cluster. We expect that the probability density 
for the size of A falls off exponentially in lA1/g2. As N becomes large the probability 
that a!! SAWS starting at the origin intersect the incipient infinite cluster approaches 
one exponentially in N. Note that self-avoidance prevents a SAW from occupying an 
area less than N. Thus, in the limit that N and L go to infinity, the above algorithm 
almost always yields a provably optimal SAW. The conclusion is that finding optimal 
SAWS is generically a polynomial time problem above the percolation threshold in two 
dimensions. It is tempting to conjecture that finding optimal SAW$ is generically Np-hard 
below the threshold for percolation of the lowest energy sites. 

Unfortunately, finding a single optimal SAW on lattices where the 'good' (lowest 
allowed energy) sites percolate does not yield useful information about the statistical 
mechanics of  SAW^ in random environments. The reason for this is that there are too 
many optimal SAWS on lattices with percolating good sites so that entropy plays an 
important role and the full ensemble of low energy  SAW^ must be investigated. Thus 
the above polynomial time algorithm cannot be used to study the controversial issue 
of  SAW^ on percoiation ciusters (see Lee et ai i W j .  i i e  abundance of exact ground 
states is probably also the reason why it is computationally easy to find some optimal 
walk. Within a renormalization group analysis (Le Doussal and Machta 1991), one 
finds that the zero temperature recursion relations, corresponding to the optimization 
problem, flow to the pure system fixed point when the fraction of lowest energy sites 
exceeds the percolation threshold whereas the finite temperature recursion relations 
flow to the strong disorder fixed point. On the other hand, if the good sites do  not 
percolate (as is always the case when the site energies are chosen from a continuous 
distribution) then the zero temperature and finite temperature recursion relations both 
flow to the strong disorder fixed point implying that the optimization problem and the 
statistical mechanics problem are equivalent. 

I 

4. Discussion 

From the point of view of understanding the statistical mechanics of SAWS in random 
environments our conclusions are discouraging. Since SAW is NP-complete, there is 
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little hope of finding a polynomial time algorithm of the kind that has allowed so 
much progress to be made on the directed walk problem. The property of NP-complete- 
ness also leads us to suspect that the range of  analytic and numerical subtleties which 
characterize spin-glasses may also appear in the disordered SAW problem. Is there, for 
example, replica symmetry breaking? 

The suspicion that NP-completeness implies spin-glass like features leads us to 
inquire into the connection, if any, between the computational complexity and statistical 
mechanics of a model system? There are few hard results in this area (see, however, 
Mezard et al 1987, Baum 1986). Comparing the disordered SAW and DSAW may prove 
useful in addressing this issue. Though these models have a number of similar features 
they differ in their computational complexity; there is a polynomial time algorithm 
for finding an optimal DSAW while finding an optimal SAW is Np-hard. It would be 
interesting to uncover a qualitative physical difference between these models which 
C%!d be trcced to their differing romp”tltionE! romp!c.ity. 
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